CSg Xponent

Xponent Decisioning

Training Overview

- What decisioning options are available?
- K How do I decide which node to use?
- Using Basic Nodes
 - Conditional 2D
 - Table Decision
 - < Tree
 - Columnar Table
 - Using Script
 - NodesJavaScript
 - < R

Target Audiences

Primary

Decisioning

- Which one is the best depends on the complexity of the decision that is being handled
- Complexity = number of inputs and outputs and whether simple conditions are sufficient

Boolean Logic – The basis of all rules

- In its simplest format ALL decision logic, regardless of the construct being used, breaks down to TRUE or FALSE
- This is called Conditional Boolean Logic

✓ IF CONDITION IS TRUE THEN 1 [ELSE 2]

- Content this most simple conditional rule format is sufficient for what is trying to be achieved
- CONDITIONS can usually be Basic or Advanced expressions
- Advanced expressions are JavaScript expressions
- The "magic" variable VAL is always available

- If an email contains .edu then I want to set is_student to 1
- If an email does not contain .edu then I want to set is_student to 0
- Content of the selected in the graph as this encourages re-use of the node

Conditional Editor ()				
Create Condition				
IF All v of the following are true:				
email Contains 🗸	.edu	No Unsaved Changes		
THENreturn <i>TRUE</i> , otherwise return <i>FALSE</i>				

- Segment Users based on the number of days they plan to travel and the destination they are planning on going
- Set low priority to anything that doesn't meet criteria

 Decision Trees, Columnar Tables and 2D Tables will provide outputs to the graph

Edit 'lead_value'	1
≓ Replace Node ► Open in Decision Tree Editor	
Decision Tree Return Value (optional):	
(schema)/tracking/lead_value	←
days:	
(schema)/tracking/duration	÷
destination:	
(schema)/tracking/destination	←

X-Value: numFollowers **Y-Value:** numFollowing

- Create an offer matrix based on the following / follower bands
- Take into account that people follow more than they are followed
- Choose offers for each intersection point

X-Value 🕕

	Create Column	f=	£-11		
	Create Row	tollowers < 10	followers < 100	Else (Goto)	
	following < 100	Offer A	Offer C	Offer B	
	following < 1000	Offer C	Offer C	Offer C	
/alue	Else (Goto)	No Offer	Offer B	No Offer	
<u>-</u>		-			

- ✓ Used when the number of inputs >= 2
- Not all combinations of inputs are interesting decisions are sparse – compared to the decision tree
- Provides one or more outputs
- Executed from left to right
- First rule that is "true" provides the output
- Blank cells are always true
- Ensure there is a catch-all rule

Columnar Table Editor 🕄				
Add Decision	single	couple	family	large_group
Rules 🔂				
num_travelers	Number(VAL) == 1	Number(VAL) == 2	Number(VAL) >= 3 && Number(VAL) <= 7	Number(VAL) >= 8
Results 🔁				
Segment	single	couple	family	large_group

- ✓ General purpose JavaScript execution node using Node 10
- Each node executes a JavaScript function
- Parameters can be passed to functions from schema or public variables
- Modifications to parameters will make changes in the input variables
- JavaScript nodes can return objects to schema locations
- ✓ Some useful packages are included:
 - UUID generate unique identifiers
 - Moment date handling
 - Iodash common data structure handling
 - ✓ ua-parser for decoding User Agent strings
 - crypto for hashing or encrypting

~

←

÷

JS

JavaScript Node Example - Convert Fahrenheit to Celsius

- Takes a single argument the temperature in Fahrenheit
- Returns the temperature in Celsius

JavaScript Editor 🚯

Add Argument

function FtoC (fahrenheit) {

1 return (fahrenheit-32)*(5/9)

}

➡ Replace Node ➡ Open in Script Editor Script Return Value:

(schema)/temperature/celsius

fahrenheit:

Edit 'FtoC'

(schema)/temperature/fahrenheit

- Use the moment library to calculate the number of days between a day in the past and today
- Takes a single argument the date in the past
- Returns the number of days since that date should be a positive integer

```
JavaScript Editor 

→ Add Argument

function daysOnTwitter (created_at) {

Const moment = require('moment');

2

3 return moment().diff(moment(created_at), "days");

Edit 'daysOnTwitter'

⇒ Replace Node

⇒ Open in Script Editor

Script Return Value:

(schema)/user_details/creation_time

created_at:
```

(schema)/tweet/user/created_at

}

- Each node executes a R Script function
- Parameters can be passed to functions from schema or public variables
- The return value of the function is the value of the last expression in the function
- All arguments are passed as strings, so type conversions are necessary before manipulation, numeric values for example.
- R Script nodes can return objects to schema locations

Decision Type		Description	Xponent Interfaces	
	CONDITIONAL RULES	Small number of distinctly different inputs with simple set of outcomes	Continue State 0 Non O Creat Contains Image: Contains I	
	DECISION TREES	Large number of distinctly different inputs with simple set of outcomes		
•	DECISION TABLE	Simple overlapping criteria with a simple finite set outcomes		
	COMPLEX DECISION MATRIX	Complex overlapping criteria with multi- dimensional outputs		

Advanced Analytics, Machine Learning and AI

Decision Type		Description	Xponent Interfaces	
*	PREDICTIVE MODELS	Highly complex criteria modeled with existing data and outcomes	Description Provide the state of the s	
	ADAPTIVE MACHINE LEARNING	Highly complex criteria and with a small set unknown or unpredictable outcomes	A/B	
	EMBEDDED AI	Leverage a third-party web-service for Real- Time/Batch scoring or multivariate testing	Amazon Machine Learning	
	COMPLEX SCRIPTING	Data validation, manipulation, optimization and parameterization	JSS	

Certification

Certification

- What types of decision nodes does Xponent have?
- ✓ What is the key difference between the IF conditional and the other nodes?
- ✓ When should you use a 2D Table?
- When should you choose a columnar table rather than a decision tree?
- When should you use JavaScript?
- When should you not use JavaScript?
- What JavaScript libraries are supported?
- Where are the parameter values selected for a decision node?

CSg Xponent

Thank You