
Advanced Graph Building

Training Overview

1

Advanced Graph Building - Learning Outcomes

Execution Layer Tasks and Roles

Best practices in Kitewheel

Testing

Debugging

Loop Node

Exercises in Kitewheel

Certification

2

3

Kitewheel Personas & Target Audience

• Enable tech environment - servers, database
• Handle security and internet facing services
• Support accounts and projects

THOMAS
Secondary

Technical
&

Support

• Solution Design
• Identifies data sources
• Configures rules

CHARLES
Primary

Solution Design
&

Configuration

• Translates business requirements into Journeys Map
• Captures journey details, metrics and goalsSOPHIE

Primary

Strategy

• Defines Business Requirements
• Defines KPIs, Goals and Metrics to track
• Tracks progress against goals on Journey Insights

CHLOE
Secondary

Client

• Creates outcomes
• Develop and test
• Deploy

Training Course Overview

4

100 Introduction to
Kitewheel Hub

200 Graph
Templates and

Managed Graphs

210 Decisioning

211 Advanced
Graph Building

220 Databases
230 REST Web

Services

231 SOAP Web
services

240 Web Tracking and
Personalization

241 Email
Personalization

242 Dynamic
Redirect

250 Social Media

300 Journey
Mapping

310 Journey Steps
320 Customer

Journey Analytics

400 Owner
Introduction

410 Advanced
Owner

420 Production
Deployment

430 Support

Execution Layer Tasks

Solution Implementation Design

Before starting a project or a graph, it is important to think about

the solution design and how to integrate with existing systems

and APIs

The graph will have to integrate with the existing systems like

customer databases, email service providers, APIs etc.

Make a list of all the existing data sources and understand what

data has to be accessed at what point in the solution to be more

efficient

Execution Layer Tasks

As an example: In a Twitter graph, all the filters should be applied before

reading the DB table to check if this is a new profile or an existing one.

Execution Layer Tasks

Reusable components

Identify the bit of logic that can be made as generic as possible so that it can be

reused in other graphs

Execution Layer Tasks

Custom components

Identify any logic that is very specific and cannot be reused

Execution Layer Tasks

Testing and Debugging

Every component has to be tested on its own- Unit testing

Then test with other nodes in the graph- Integration testing

Production Support

Every issue that appears after the project goes live, is categorized as

production support

Production issues can be related to an unhandled exception in the

graph logic or to unexpected data formats or volume from the source.

Support team can help with classification.

Best Practices

Use Graph Templates where possible

Graph Templates are graphs, schema and public variables which can be used and combined to

build more complex graphs

Templates are pre-packaged and created for some of the most common use cases in Kitewheel

Check if any of the graph templates can be used in the graph that you are building

Use tagging to find components

Create tags while creating a new node, for ease of search and readability

Using the comment node to inform the graph viewer

Use comment nodes in the graph that has a description of the graph

Use comments in the JavaScript node to describe what it does

Best Practices

Identify reusable components

Identify bits of logic that can be made as generic as possible

Smaller graphs

Make sure the graphs are small enough to be viewed in a single screen

Determine which node to use to represent rules or make decisions

If then else statements to return either True or False - IF Conditional

Two attributes are used to make the decision – 2D table

Multiple attributes are to be evaluated in an order to get multiple outputs - Columnar table

Combination of multiple attributes contributes to different decisions, helping in categorization -

Decision Tree

When a logic or rule check cannot be implemented by any of the built-in decision nodes -

JavaScript

Randomly select a variant for A/B or multivariate testing, Choose the winning variant that has

been getting the most engagement, Reassign the probability of selecting a variant to favor the

winner - A/B Split

Best Practices

Using Application Parameters

Application parameters, like access codes, secret keys, account IDs etc., that are project and

environment specific

Kitewheel records this data in a database table called appParams

This data is read into persistent variables that cache it for a specified time

Align schema and data model on naming convention

Make sure the name of the fields in database tables and the schema variable names are

same to avoid confusion

Place schema variables used for a journey, under the same section

Error branches on all decision, adaptor, and KIM nodes

Add error branch and error handling to all decision-making nodes and Kitewheel Identity

Manager nodes

Timestamp on KIM nodes

Add the transaction’s timestamp to all journey step and interaction nodes, so the accurate

time is associated with the steps in the KIM

Best Practices

Version everything

After testing individual nodes and the graph, create a Version of the Project

View any version of the project by selecting the button beside the version

Note: Create a version for your current changes before restoring a version, otherwise they will be lost

Make sure to give a meaningful name to the version along with the date (when version was

created) and user initials (if multiple people are working on it)

Older versions can be restored by clicking the Restore Version button. Any version after the

restored version become archived under the restored version.

Testing

Test everything!

Unit test each node before combining them with any other node

Development environment

Integration test components / sub graphs

Development / Stage environment

End to end testing

Development / Stage

All rules need to be tested - correlate to Project Test Cases

Every rule should be hit

Test for exceptions and edge cases

Testing

Test Case results

Present to Strategy, Business and QA teams

Any changes to the graph need to be unit and regression tested

Load testing

SLA needs to be defined

Always load test at least 5 to 10% of the total volume

UAT / Smoke testing

Testing in the Production environment if possible

Documentation

Everything that was built must be documented along with the test cases

and load test results

Debugging

Kitewheel hub provides 3 types of visual test settings:

• Iterations

• Duration

• Data (JSON)

Run 1 or 2 iterations to capture the input data for a listener graph

Copy the JSON from the transaction

Use JSON as input to test different rules and exceptions in the

graph

Debugging

Use JSON as input to test different rules and exceptions in the graph

Use JSON to unit test complex components and nodes

When testing the sub-graphs in a transaction, display the JSON as it exits-

use this to watch the schema as it is transformed in the graph

For example: if the graph has an error in sub-graph 3 capture the JSON

from sub-graph 2 and run it through 3 to see the results

Debugging

Validate your graphs

Invalid graphs will not be allowed to run

The graph validator will highlight the broken node or link

Error messages show up on the transaction history on the node that

fails but the error could have been introduced earlier in the graph

Common Error messages and Data Validation errors are

documented in the online Kitewheel

Loop Node – Requirements

To execute a subgraph multiple times in one position in the graph

You will need:

A sub-graph

Schema location

Formatted JSON array of elements or objects

Eg: “cars”: [“Ford”,”BMW”,”Fiat”]

If not an array it will be considered an array with 1 value

20

Loop Node – Creation

Add a new node to the graph

Choose ‘Loop Node’

Select the loop node to add conditions

Schema location for the data

Drop down to choose a graph to loop through

21

Loop Node – Notes

The data location will be the same as where the array of data is when within

the sub-graph

But only the one value

Loop node cannot:

Call it’s own graph

Use public variables – must use schema locations

Will process the array sequentially

Graph state is global so changes made in one sub-graph will be available

for the next sub-graph

Testing console will show all iterations of the loop even though the

graph will show just one transaction

22

Loop Node – Exercise

Create a loop that loops over the following array of words and concatenates

them into one sentence.

["The","quick","brown","fox","jumps","over","the","lazy","dog."]

Hints:

JavaScript will be needed for the concatenation

Have a separate location for the sentence location in the schema

23

Loop Node – Exercise Solution

24

Loop Node – Exercise Solution

25

HINT 1: - Pick all eligible records, add 5 days to get the next process time. Get their emailAddress
and send them email. Update their nextProcessTime and lastProcessTime in the table –
bg_customer

HINT 2: There are at least 10 edits/errors in this graph (see following slide)

Debugging- Exercise

Send email with coupon “THISISRANDOM” to all eligible customers and

update their details in DB after sending the email. They should get their next

email after 5 days.

Debugging- Exercise

• Move the start node to addDays

• Remove the ghost node

• Listener Query should not have *

• Change 600 to smaller number

• addDays JS – parameter value should be today instead
of TODAY

• Can use moment library to add days

• Get node will fail, because emailAddress is blank in
database. Add values to it

• Email adaptor – add connection details in admin page,
change from address, Fix the firstName parameter -
%%, and map it to schema value.

• Remove the unwanted goto line

• currenttime js – Change “ to ‘

• Update_bg_customer – remove s from table name (it is
bg_customer), set the next_process_time and map the
input and output correctly

• Return node should return something.

• Error Handling, Transaction logging etc can be added
to this graph

Debugging- Exercise Solution

To fix this graph, we need to:
• Add a listener to get the information from a source
• Move the start node to the Set node, and delete the ghost node
• Move the Update Profile node to immediately after the set node (so we can
access the Profile's information in the graph)
• Replace second ghost node with a Return node (or remove this ghost node)
• Add a GoTo link to the categorization tree node
• Add a value to the Return node
• Add error handling

Certification

How many graph templates can be used in a project?

Who is responsible to test the connections in a project?

What are the different types of testing that should be performed in Acquia

Journey?

What are the steps to debug an Acquia Journey API graph?

What are the steps to debugging a Database Listener graph?

What format does the data have to be stored in to loop through?

What happens if it’s not stored in that format?

Where can the data not be stored?

Can a graph loop through a graph which has a different loop on it?

How does the testing console show the loops?

Thank You

30

