
https://www.csgi.com/products/xponent/ 1https://www.csgi.com/products/xponent/ 1

Advanced Graph
Building

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


Training Overview



https://www.csgi.com/products/xponent/ 3https://www.csgi.com/products/xponent/ 3

Advanced Graph Building - Learning Outcomes

Execution Layer Tasks and Roles 
Best practices in Xponent 
Testing
Debugging 
Loop Node
Exercises in Xponent 
Certification

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 4https://www.csgi.com/products/xponent/ 4

Xponent Personas & Target Audience

• Enable tech environment - servers, database
• Handle security and internet facing services
• Support accounts and projects

THOMAS
Secondary

• Solution Design
• Identifies data sources
• Configures rules

CHARLES
Primary

Solution Design
&

Configuration

Technical
& 

Support

• Translates business requirements into Journeys Map
• Captures journey details, metrics and goalsSOPHIE

Primary

Strategy

• Defines Business Requirements
• Defines KPIs, Goals and Metrics to track
• Tracks progress against goals on Journey Insights

CHLOE
Secondary

Client

• Creates outcomes
• Develop and test
• Deploy

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 5https://www.csgi.com/products/xponent/ 5

Training Course Overview

100 Introduction to 
Xponent Hub

200 Graph 
Templates and 

Managed Graphs

210 Decisioning

211 Advanced 
Graph Building

220 Databases
230 REST Web

Services

231 SOAP Web
services

240 Web Tracking and 
Personalization

241 Email 
Personalization

242 Dynamic 
Redirect

250 Social Media

300 Journey 
Mapping

310 Journey Steps 320 Customer 
Journey Analytics

400 Owner 
Introduction

410 Advanced 
Owner

420 Production 
Deployment 430 Support

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 6https://www.csgi.com/products/xponent/ 6

Solution Implementation Design
Before starting a project or a graph, it is important to think about 
the solution design and how to integrate with existing systems 
and APIs
The graph will have to integrate with the existing systems like 
customer databases, email service providers, APIs etc.
Make a list of all the existing data sources and understand what 
data has to be accessed at what point in the solution to be more 
efficient

Execution Layer Tasks

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 7https://www.csgi.com/products/xponent/ 7

Execution Layer Tasks
As an example: In a Twitter graph, all the filters should be applied before 
reading the DB table to check if this is a new profile or an existing one.

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 8https://www.csgi.com/products/xponent/ 8

Execution Layer Tasks

Reusable components
Identify the bit of logic that can be made as generic as possible so that it can be
reused in other graphs

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 9https://www.csgi.com/products/xponent/ 9

Custom components
Identify any logic that is very specific and cannot be reused

Execution Layer Tasks

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 10https://www.csgi.com/products/xponent/ 10

Testing and Debugging
Every component has to be tested on its own- Unit testing 
Then test with other nodes in the graph- Integration testing

Production Support
Every issue that appears after the project goes live, is categorized as
production support
Production issues can be related to an unhandled exception in the 
graph logic or to unexpected data formats or volume from the source. 
Support team can help with classification.

Execution Layer Tasks

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 11https://www.csgi.com/products/xponent/ 11

Use Graph Templates where possible
Graph Templates are graphs, schema and public variables which can be used and combined to 
build more complex graphs
Templates are pre-packaged and created for some of the most common use cases in Xponent
Check if any of the graph templates can be used in the graph that you are building

Use tagging to find components
Create tags while creating a new node, for ease of search and readability

Using the comment node to inform the graph viewer
Use comment nodes in the graph that has a description of the graph 
Use comments in the JavaScript node to describe what it does

Best Practices

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 12https://www.csgi.com/products/xponent/ 12

Best Practices
Identify reusable components

Identify bits of logic that can be made as generic as possible

Smaller graphs
Make sure the graphs are small enough to be viewed in a single screen

Determine which node to use to represent rules or make decisions
If then else statements to return either True or False - IF Conditional
Two attributes are used to make the decision – 2D table
Multiple attributes are to be evaluated in an order to get multiple outputs - Columnar table
Combination of multiple attributes contributes to different decisions, helping in categorization - 
Decision Tree
When a logic or rule check cannot be implemented by any of the built-in decision nodes -
JavaScript
Randomly select a variant for A/B or multivariate testing, Choose the winning variant that has 
been getting the most engagement, Reassign the probability of selecting a variant to favor the 
winner - A/B Split

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 13https://www.csgi.com/products/xponent/ 13

Best Practices
Using Application Parameters

Application parameters, like access codes, secret keys, account IDs etc., that are project and
environment specific
Xponent records this data in a database table called appParams
This data is read into persistent variables that cache it for a specified time

Align schema and data model on naming convention
Make sure the name of the fields in database tables and the schema variable names are 
same to avoid confusion
Place schema variables used for a journey, under the same section

Error branches on all decision, adaptor, and KIM nodes
Add error branch and error handling to all decision-making nodes and Xponent Identity 
Manager nodes

Timestamp on KIM nodes
Add the transaction’s timestamp to all journey step and interaction nodes, so the accurate
time is associated with the steps in the KIM

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 14https://www.csgi.com/products/xponent/ 14

Best Practices

Version everything
After testing individual nodes and the graph, create a Version of the Project
View any version of the project by selecting the button beside the version

Note: Create a version for your current changes before restoring a version, otherwise they will be lost

Make sure to give a meaningful name to the version along with the date (when version was
created) and user initials (if multiple people are working on it)

Older versions can be restored by clicking the Restore Version button. Any version after the 
restored version become archived under the restored version.

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 15https://www.csgi.com/products/xponent/ 15

Testing

Test everything!
Unit test each node before combining them with any other node

Development environment
Integration test components / sub graphs

Development / Stage environment
End to end testing

Development / Stage
All rules need to be tested - correlate to Project Test Cases 
Every rule should be hit
Test for exceptions and edge cases

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 16https://www.csgi.com/products/xponent/ 16

Testing

Test Case results
Present to Strategy, Business and QA teams
Any changes to the graph need to be unit and regression tested

Load testing
SLA needs to be defined
Always load test at least 5 to 10% of the total volume

UAT / Smoke testing
Testing in the Production environment if possible

Documentation
Everything that was built must be documented along with the test cases
and load test results

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 17https://www.csgi.com/products/xponent/ 17

Debugging

Xponent hub provides 3 types of visual test settings:
• Iterations
• Duration

• Data (JSON)

Run 1 or 2 iterations to capture the input data for a listener graph
Copy the JSON from the transaction
Use JSON as input to test different rules and exceptions in the
graph

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 18https://www.csgi.com/products/xponent/ 18

Debugging

Use JSON as input to test different rules and exceptions in the graph 
Use JSON to unit test complex components and nodes

When testing the sub-graphs in a transaction, display the JSON as it exits- 
use this to watch the schema as it is transformed in the graph
For example: if the graph has an error in sub-graph 3 capture the JSON 
from sub-graph 2 and run it through 3 to see the results

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 19https://www.csgi.com/products/xponent/ 19

Debugging

Validate your graphs
Invalid graphs will not be allowed to run
The graph validator will highlight the broken node or link

Error messages show up on the transaction history on the node that 
fails but the error could have been introduced earlier in the graph
Common Error messages and Data Validation errors are
documented in the online Xponent

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 20https://www.csgi.com/products/xponent/ 20

Loop Node – Requirements

To execute a subgraph multiple times in one position in the graph 
You will need:

A sub-graph
Schema location

Formatted JSON array of elements or objects 
Eg: “cars”: [“Ford”,”BMW”,”Fiat”]

If not an array it will be considered an array with 1 value

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 21https://www.csgi.com/products/xponent/ 21

Loop Node – Creation

Add a new node to the graph
Choose ‘Loop Node’

Select the loop node to add conditions
Schema location for the data
Drop down to choose a graph to loop through

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 22https://www.csgi.com/products/xponent/ 22

Loop Node – Notes

The data location will be the same as where the array of data is when within 
the sub-graph

But only the one value
Loop node cannot:

Call it’s own graph
Use public variables – must use schema locations

Will process the array sequentially
Graph state is global so changes made in one sub-graph will be available
for the next sub-graph
Testing console will show all iterations of the loop even though the 
graph will show just one transaction

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 23https://www.csgi.com/products/xponent/ 23

Create a loop that loops over the following array of words and concatenates 
them into one sentence.
["The","quick","brown","fox","jumps","over","the","lazy","dog."]

Hints:
JavaScript will be needed for the concatenation
Have a separate location for the sentence location in the schema

Loop Node – Exercise

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 24https://www.csgi.com/products/xponent/ 24

Loop Node – Exercise Solution

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 25https://www.csgi.com/products/xponent/ 25

Loop Node – Exercise Solution

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 26https://www.csgi.com/products/xponent/ 26

HINT 1: - Pick all eligible records, add 5 days to get the next process time. Get their emailAddress 
and send them email. Update their nextProcessTime and lastProcessTime in the table – 
bg_customer

HINT 2: There are at least 10 edits/errors in this graph (see following slide)

Debugging- Exercise

Send email with coupon “THISISRANDOM” to all eligible customers and 
update their details in DB after sending the email. They should get their next 
email after 5 days.

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 27https://www.csgi.com/products/xponent/ 27

Debugging- Exercise

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 28https://www.csgi.com/products/xponent/ 28

Debugging- Exercise Solution

To fix this graph, we need to:
• Add a listener to get the information from a source
• Move the start node to the Set node, and delete the ghost node
• Move the Update Profile node to immediately after the set node (so we can
access the Profile's information in the graph)
• Replace second ghost node with a Return node (or remove this ghost node)
• Add a GoTo link to the categorization tree node
• Add a value to the Return node
• Add error handling

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 29https://www.csgi.com/products/xponent/ 29

Certification

How many graph templates can be used in a project? 
Who is responsible to test the connections in a project?
What are the different types of testing that should be performed in Acquia
Journey?
What are the steps to debug an Acquia Journey API graph? 
What are the steps to debugging a Database Listener graph? 
What format does the data have to be stored in to loop through? 
What happens if it’s not stored in that format?
Where can the data not be stored?
Can a graph loop through a graph which has a different loop on it?
How does the testing console show the loops?

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/


https://www.csgi.com/products/xponent/ 30https://www.csgi.com/products/xponent/ 30

Thank You

https://www.csgi.com/products/xponent/
https://www.csgi.com/products/xponent/

