
Kitewheel Web Services



Training Overview

1



Kitewheel Web Services – Learning Outcomes

Introduction to RESTful Web Services

Calling a REST web service end point from Kitewheel

Use of different methods: GET, POST, PUT & DELETE

Parameterization of web service calls

Exposing Kitewheel logic as a web service

Demonstrate Knowledge of Kitewheel Web Services

Certification 

2



Introduction to RESTful Web 
Services

5



What are RESTful Web Services

REST stands for Representational State Transfer

HTTP request format
<VERB> is one of the HTTP methods like GET, PUT, POST, DELETE, OPTIONS

<URI> is the URI of the resource on which the operation is going to be performed

<HTTP Version> is the version of HTTP, generally "HTTP v1.1" .

<Request Header> contains the metadata as a collection of key-value pairs of 

headers and their values. These settings contain information about the message 

and its sender like client type, the formats client supports, format type of the 

message body, cache settings for the response, and a lot more information.

<Request Body> is the actual message content. In a RESTful service, that's 

where the representations of resources sit in a message.

6



Representational State Transfer – RESTful Services

Resource identification through Uniform Resource Identifiers:

http(s)://servername/resourcename/resourceval?param1=val1&param2=val2

Operations

PUT creates a new resource, which can be then deleted by using DELETE. 

GET retrieves the current state of a resource in some representation. 

POST transfers a new state onto a resource

Self-descriptive messages: Resources are decoupled from their 

representation so that their content can be accessed in a variety of formats, 

such as HTML, XML, plain text, PDF, JPEG, JSON, and others.

Stateful interactions through hyperlinks: Every interaction with a resource is 

stateless

7



HTTP Response Codes

1xx – Informational 

2xx – Success

200 OK 

201 Created

3xx – Redirect 

4xx – Client Error 

400 – Bad Request 

401 – Unauthorized 

404 – Not Found 

418 – I’m a teapot 

5xx – Server Error

500 – Internal Server Error 

8



Useful Resources to test Web Services

Postman – Chrome plugin or standalone app – very useful for test 

driven development 

curl – command line tool – for those who like command lines 

9



Getting Started

10



In This Section

Call a RESTful web service to get some information

GET method

POST method

Using query parameters and parameterization

Adding custom Headers 

DELETE method

11



Extreme IP Lookup

Returns the geographic location for a 

given IP address

Will return XML or JSON response 

GET http://extreme-ip-

lookup.com/json/68.70.164.200

returns:

12

{
"businessName" : "MUTARE",
"businessWebsite" : "",
"city" : "Cascade",
"continent" : "North America",
"country" : "United States",
"countryCode" : "US",
"ipName" : "",
"ipType" : "Business",
"isp" : "NetSource Communications",
"lat" : "42.2870",
"lon" : "-91.0144",
"org" : "MUTARE",
"query" : "68.70.164.200",
"region" : "Iowa",
"status" : "success"

}

http://extreme-ip-lookup.com/json/68.70.164.200


Creating a REST Web Service Connection

Only an Owner has access to the Admin 

screen to create and test a connection

The new connection will be created 

across all environments in that project.

The connection can be set up differently 

in the Development environment and the 

Production environment

Connections may require 

credentials or OAuth keys 

13



Creating a Web Service GET Adaptor  

Choose Connection 

Choose Method: GET

Extend the request URL 

with: 

Constant text 

Query parameters 

Use parameters by using 

2 ‘%’ characters:

%%paramName%%

Remember to save and 

update parameters when 

making any changes

14



Creating a Web Service POST Adaptor  

Choose Connection and method: POST

Indicate the Request Body Source in the schema

Indicate where the result should go

15



Supported Methods

GET

POST

PUT

DELETE

PATCH

16



Kitewheel as a Web Service

17



Kitewheel Graph API

Any graph in Kitewheel that is not a listener can be exposed as a 

web service endpoint by adding an API listener

Add an API listener using the dropdown in the top left of a graph

The listener will generate a unique API end point for that graph by 

creating a unique Listener ID

This ID is unique for the graph-environment-project combination. If 

any of these change, a new Listener ID will be created

The URL format will be 

https://api[-region].kitewheel.com/api/v1/listener/[listenerID]

The API listener supports GET and POST requests only 

18



Kitewheel Graph API (continued)

It is designed for an RPC style interface 

op=createCustomer&firstName=Neil&lastName=Skilling

op=deleteCustomer&id=1234

The listener writes the request into a designated part of the schema

This includes the “method” and other query parameters

A “_kw” object is also provided that has extra information on the request

19



Kitewheel Graph API

20



Hands On: Create a Web Service

Create a web service that offers the following methods

Reject incorrect methods or resources with a suitable error 

21

Method URI Operation

GET op=getCustomer&id=2 Return customer 
with id 2 

GET op=createCustomer&firstName={fname}&lastName={l
name}

Create customer 
returns id

GET op=updateCustomer&id=5&age={age} Update customer
with id 5

GET op=deleteCustomer&id=7 Delete customer 
with id 7



Next Steps

Create Graph template to decode resource and method 

correctly 

Create input and output JSON objects

Create database adaptors 

Create test cases in Postman or curl 

22



Certification

23



Questions

What kinds of Web Services does Kitewheel support? 

What does REST stand for? 

What are the four most common REST methods? 

How do you create a Web Service GET adaptor? 

What does a POST require that a GET does not? 

What is the difference between PUT and POST? 

What are the common HTTP error codes? 

Do I need to create my schema elements before calling a web service? 

How do I make a Kitewheel graph a web service? 

How do I know what the method is that I have been called with? 

Where are my query parameters?

What objects can I return from my web service?

24



Thank You 

25


